Intelligent recommendations use predictive analytics to recommend items and services to customers based on their past behaviours, preferences, and interests. They are used by businesses to increase customer engagement, provide a more personalised experience, and improve customer retention. Intelligent recommendations can be based on data from customer surveys, browsing behaviours, and purchase histories, as well as other sources of customer data. They are often implemented as part of a larger customer relationship management system, and have been shown to be effective in increasing customer satisfaction, loyalty, and revenue.
Product recommendations are a critical aspect of any retailer’s ecommerce strategy. Smart recommendations help customers find relevant products at lower costs. A product recommended at the right time can influence buying of a product over another. Product recommendations can help boost sales and, thereby, profits too.
In a traditional search system, the objective is to return results that are similar to a query object in one dimension or multiple dimensions based on product features. Recommendations added differentiate and personalise across queries based-on user behaviour analytics.
Ecommerce businesses must keep customers interested long enough for purchase decisions to be made. They must make suitable recommendations to keep customers interested. In fact, smart recommendations can stimulate impulse purchases too.
A study shows that product recommendations account for one-third of online revenue and can reduce cart abandonment by 4.35%. Leading ecommerce sites acknowledge that over 30% of their revenue is earned from purchase of recommended products.
- Collaborative Filtering
- Content-Based Filtering
- Matrix Factorisation
- Deep Learning-based Recommendation
- Personalised Product Search
- Product Recommendations based on Viewed Items
- Product Recommendations based on Purchased Items
- Hybrid Recommendation Algorithms
This algorithm tracks which products are viewed by a customer and uses that data to recommend similar products to the customer.